Nachrichten aus der Chemie (the membership magazine of the GDCh) annually publishes trend reports in which authors spot and compile an overview of inspiring work and recent trends in the most important chemical disciplines.
ChemViews gives you an overview of the latest trend report, its authors and the literature collected.
Trends in Theoretical Chemistry 2011
A. Köhn, K. Reuter, B. Kirchner, E. Perlt
Explicitly correlated methods, which, until a few years ago, were purely specialist tools, are increasingly being used in various applications. Theoretical chemistry has established itself in catalysis research with multiscale simulations, whilst the quantum-cluster-equilibrium method provides an alternative to current ab initio molecular dynamics methods.
► Full article (in German):
Trendbericht Theoretische Chemie 2011,
- Explizit-korrelierte Verfahren,
A. Köhn,
Nachrichten aus der Chemie 2012, 60(3), 323–325. - Multiskalenmodellierung in der Katalyse,
K. Reuter,
Nachrichten aus der Chemie 2012, 60(3), 326–328.
- Quanten-Cluster-Gleichgewicht,
B. Kirchner, E. Perlt,
Nachrichten aus der Chemie 2012, 60(3), 328–331.
► All 2011 trend reports on ChemViews
Authors
Andreas Kohn, born 1974, has been a Research Group Leader at the University of Mainz, Germany, since 2005, and a Heisenberg Fellow since 2011. He studied chemistry at the University of Karlsruhe, Germany, and received his Ph.D. there in theoretical chemistry in 2003. He then completed a two-year postdoctoral research position at the University of Aarhus, Denmark. In 2011, he completed his Habilitation in Mainz on explicitly-correlated coupled-cluster theory.
His other research interests include the development of multireference methods and the application of quantum-chemical methods for studying molecular interactions in the electronically excited state such as energy-transfer processes.
Karsten Reuter, born 1970, has held the position of Chair of Theoretical Chemistry at the Technical University of Munich, Germany, since 2009. He studied physics in Erlangen, Germany, York, UK, and Madrid, Spain, and received a Ph.D. in theoretical surface physics in Erlangen. After stays at the Fritz-Haber-Institut of the Max-Planck Society (MPS), Berlin, Germany, and at the FOM Institute in Amsterdam, the Netherlands, he completed his Habilitation at the Free University of Berlin in 2005. Before his took up his current position in Munich, he led an independent research group at the MPS at the Central Institute for Catalysis Research.
His main interests are in the quantitative multiscale modeling of heterogeneous catalysis with an applications focus.
Barbara Kirchner took the Chair of Theoretical Chemistry at the University of Leipzig, Germany, in 2007. Her research interests range from the investigation of solvents and reactions, as well as intermolecular forces in interesting molecules through quantum-chemical calculations, to program development. She is the editor of the volumes “Ionic Liquids” and “Multiscale Methods in Molecular Applied Chemistry” in the series “Topics in Current Chemistry”, for which she has also edited “Electronic Effects in Organic Chemistry”.
Eva Perlt, born 1987, graduated in chemistry from the University of Leipzig, Germany, in 2011. In 2008, she joined the group of Barbara Kirchner, where she completed her bachelor’s and master’s theses and is currently working as a Ph.D. student.
Her research focuses on the quantum-cluster-equilibrium method and method development. Eva Perlt is a recipient of a Graduate School Scholarship from the European Social Fund.
References
Explicitly Correlated Methods
1) C. Hättig, W. Klopper, A. Köhn, D. P. Tew, Chem. Rev. 2012, 112, 4–74. DOI: 10.1039/C2CE06692K
2) E. A. Hylleraas, Z. Phys. 1929, 54, 347–366. DOI: 10.1007/BF01375457
3) W. Kutzelnigg, Theor. Chem. Acc. 1985, 68, 445–469. DOI: 10.1007/BF00527541; W. Kutzelnigg, W. Klopper, J. Chem. Phys. 1991, 94, 1985–2001. DOI: 10.1016/0009-2614(91)87002-S; V. Termath, W. Klopper, W. Kutzelnigg, ibid. 2002–2019. DOI: 10.1063/1.459922; W. Klopper, W. Kutzelnigg, ibid. 2020–2030. DOI: 10.1063/1.459923
4) S. Ten-no, Chem. Phys. Lett. 2004, 398, 56–61. DOI: 10.1016/j.cplett.2004.09.041
5) W. Klopper, C. C. M. Samson, J. Chem. Phys. 2002, 116, 6397–6410. DOI: 10.1063/1.1461814; E. F. Valeev, Chem. Phys. Lett. 2004, 395, 190–195. DOI: 10.1016/j.cplett.2004.07.061
6) D. P. Tew, W. Klopper, C. Neiss, C. Hättig, Phys. Chem. Chem. Phys. 2007, 9, 1921–1930. DOI: 10.1039/B617230J; 2008, 10, 6325–6327 (Erratum).
7) F. R. Manby, J. Chem. Phys. 2003, 119, 4607–4613. DOI: 10.1063/1.1594713
8) T. B. Adler, G. Knizia, H.-J. Werner, J. Chem. Phys. 2007, 127, 221106. DOI: 10.1063/1.2817618; G. Knizia, T. B. Adler, H.-J. Werner, J. Chem. Phys. 2009, 130, 054104. DOI: 10.1063/1.3054300; C. Hättig, D. P. Tew, A. Köhn, J. Chem. Phys. 2010, 132, 231102. DOI: 10.1063/1.3442368
9) K. A. Peterson, T. B. Adler, H.-J. Werner, J. Chem. Phys. 2008, 128, 084102. DOI: 10.1063/1.2831537
10) H.-J. Werner, J. Chem. Phys. 2008, 129, 101103. DOI: 10.1063/1.2982419; T. B. Adler, J. Chem. Phys. 2011, 135, 144117. DOI: 10.1063/1.3647565
11) J. Friedrich, D. P. Tew, W. Klopper, M. Dolg, J. Chem. Phys. 2010, 132, 164114. DOI: 10.1063/1.3394017
12) D. P. Tew, B. Helmich, C. Hättig, J. Chem. Phys. 2011, 135, 074107. DOI: 10.1063/1.3624370
13) T. Shiozaki, H.-J. Werner, J. Chem. Phys. 2011, 134, 034113. DOI: 10.1063/1.3528720; ibid. 184104. DOI: 10.1063/1.3587632
14) P. Botschwina, R. Oswald, O. Dopfer, Phys. Chem. Chem. Phys. 2011, 13, 14163–14175. DOI: 10.1039/C1CP20815B; P. Botschwina, R. Oswald, J. Phys. Chem. A 2011, 115, 13664–13672. DOI: 10.1021/jp207905t
15) B. J. Miller, J. R. Lane, H. G. Kjaergaard, Phys. Chem. Chem. Phys. 2011, 13, 14183–14193. DOI: 10.1039/C1CP21190K
16) M. L. Senent, R. Domínguez, Chem. Phys. Lett. 2010, 501, 25–29. DOI: 10.1016/j.cplett.2010.10.061
17) A. Yachmenev, S. N. Yurchenko, T. Ribeyre, W. Thiel, J. Chem. Phys. 2011, 135, 074302. DOI: 10.1063/1.3624570
18) D. K. W. Mok, E. P. F. Lee, F.-T. Chau, J. M. Dyke, Phys. Chem. Chem. Phys. 2011, 13, 9540–9553. DOI: 10.1039/C1CP20490D
19) S. H. Dürrenstein, M. Olzmann, J. Aguilera-Iparraguirre, R. Barthel, W. Klopper, Chem. Phys. Lett. 2011, 513, 20–26. DOI: 10.1016/j.cplett.2011.07.050
20) H. F. van Horsten, S. T. Banks, D. C. Clary, J. Chem. Phys. 2011, 135, 094311. DOI: 10.1063/1.3625960
21) A. Köhn, J. Chem. Phys. 2010, 133, 174118. DOI: 10.1063/1.3496373
22) J. Yang, C. Hättig, J. Chem. Phys. 2009, 130, 124101. DOI: 10.1063/1.3093947; M. Hanauer, A. Köhn, J. Chem. Phys. 2009, 131, 124118. DOI: 10.1063/1.3238237
23) S. Höfener, W. Klopper, Mol. Phys. 2010, 108, 1783–1796. DOI: 10.1080/00268976.2010.490795
Multiscale Modeling in Catalysis
1) www.gecats.de.
2) K. Reuter, C. Stampfl, M. Scheffler, in Handbook of Materials Modeling, Part A Methods (Ed: S. Yip), Springer, Berlin, 2005. ISBN: 978-1-4020-3287-5
3) K. Reuter, in Modelling Heterogeneous Catalytic Reactions: From the Molecular Process to the Technical System (Ed: O. Deutschmann), Wiley-VCH, Weinheim, 2011. ISBN: 978-3-527-32120-9
4) K. Reuter, D. Frenkel, M. Scheffler, Phys. Rev. Lett. 2004, 93, 116105. DOI: 10.1103/PhysRevLett.93.116105
5) K. Honkala, A. Hellman, I. N. Remediakis, A. Logadottir, A. Carlsson, S. Dahl, C. H. Christensen, J. K. Nørskov, Science 2005, 307, 555. DOI: 10.1126/science.1106435
6) O. R. Inderwildi, S. J. Jenkins, D. A. King, J. Am. Chem. Soc. 2006, 129, 1751. DOI: 10.1021/ja067722w
7) A. A. Gokhale, J. A. Dumesic, M. Mavrikakis, J. Am. Chem. Soc. 2008, 130, 1402. DOI: 10.1021/ja0768237
8) D. Vlachos, AIChE J. 1997, 43, 3031. DOI: 10.1002/aic.690431115
9) R. Kissel-Osterrieder, F. Behrendt, J. Warnatz, Proc. Combust. Inst. 1998, 27, 2267. DOI: 10.1016/S0082-0784(98)80076-3
10) D. Majumder, L. J. Broadbelt, AIChE J. 2006, 52, 4214. DOI: 10.1002/aic.11030
11) S. Matera, K. Reuter, Catal. Lett. 2009, 133, 156. DOI: 10.1007/s10562-009-0168-8; Phys. Rev. B 2010, 82, 085446. DOI: 10.1103/PhysRevB.82.085446
12) O. Deutschmann, in Handbook of Heterogeneous Catalysis, 2nd Edition (Eds. G. Ertl, H. Knözinger, F. Schüth, J. Weinkamp), Wiley-VCH, Weinheim, 2008. ISBN: 978-3-527-31241-2
13) E. A. Carter, Science 2008, 321, 800. DOI: 10.1126/science.1158009
14) G. Henkelman, H. Jonsson, J. Chem. Phys. 2001, 115, 9657. DOI: 10.1063/1.1415500
15) F. El-Mellouhi, N. Mousseau, L. J. Lewis, Phys. Rev. B 2008, 78, 153202. DOI: 10.1103/PhysRevB.78.153202
16) H. Meskine, S. Matera, M. Scheffler, K. Reuter, H. Metiu, Surf. Sci. 2009, 603, 1724. DOI: 10.1016/j.susc.2008.08.036
17) M. Maestri, K. Reuter, Angew. Chem. 2011, 123, 1226. DOI: 10.1002/ange.201006488
Quantum Cluster Equilibrium Theory
1) D. Sebastiani, Nachr. Chem. 2009, 57, 307. DOI: 10.1002/nadc.200960789; B. Kirchner, P. J. di Dio, J. Hutter, Top. Curr. Chem. 2012, 307, 109. DOI: 10.1007/128_2011_195
2) O. A. von Lilienfeld, I. Tavernelli, U. Röthlisberger, D. Sebastiani, Phys. Rev. Lett. 2004, 93, 153004. DOI: 10.1103/PhysRevLett.93.153004; E. Tapavicza, I-C. Lin, O. A. von Lilienfeld, I. Tavernelli, M. Coutinho-Neto, U. Röthlisberger, J. Chem. Theory Comput. 2007, 3, 1673. DOI: 10.1021/ct700049s
3) S. Grimme, J. Comput. Chem. 2004, 25, 1463. DOI: 10.1002/jcc.20078; S. Grimme, J. Comput. Chem. 2006, 27, 1787. DOI: 10.1002/jcc.20495
4) S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104. DOI: 10.1063/1.3382344
5) J. Schmidt, J. VandeVondele, I.-F. W. Kuo, D. Sebastiani, J. I. Siepmann, J. Hutter, C. J. Mundy, J. Phys. Chem. B 2009, 113, 11959. DOI: 10.1021/jp901990u
6) D. Rappoport, F. Furche, D. Sebastiani, T. Fleig, Nachr. Chem. 2009, 57, 305. DOI: 10.1002/nadc.200960789
7) M. J. McGrath, I.-F. W. Kuo, J. I. Siepmann, Phys. Chem. Chem. Phys. 2011, 13, 19943. DOI: 10.1039/c1cp21890e
8) F. Weinhold, J. Chem. Phys. 1998, 109, 367. DOI: 10.1063/1.476573
9) B. Kirchner, C. Spickermann, S. B. C. Lehmann, E. Perlt, J. Langner, M. von Domaros, P. Reuther, F. Uhlig, M. Kohagen, M. Brüssel, Comput. Phys. Commun. 2011, 182, 1428. DOI: 10.1016/j.cpc.2011.03.011
10) B. Kirchner, J. Chem. Phys. 2005, 123, 204116. DOI: 10.1063/1.2133731
11) G. Matisz, W. M. F. Fabian, A.-M. Kelterer, S. Kunsági-Máté, J. Mol. Struct. Theochem. 2010, 956, 103. DOI: 10.1016/j.theochem.2010.07.003
12) F. Weinhold, J. Chem. Phys. 1998, 109, 373. DOI: 10.1063/1.476574
13) A. Nilsson, L. G. M. Pettersson, Chem. Phys. 2011, 389, 1. DOI: 10.1016/j.chemphys.2011.07.021
14) R. Ludwig, F. Weinhold, J. Chem. Phys. 1999, 110, 508. DOI: 10.1063/1.478136
15) S. B. C. Lehmann, C. Spickermann, B. Kirchner, J. Chem. Theory Comput. 2009, 5, 1640. DOI: 10.1021/ct800310a
16) S. B. C. Lehmann, C. Spickermann, B. Kirchner, J. Chem. Theory Comput. 2009, 5, 1650. DOI: 10.1021/ct900189v
17) A. Lenz, L. Ojamäe, J. Chem. Phys. 2009, 131, 134302. DOI: 10.1063/1.3239474; A. Lenz, L. Ojamäe, Phys. Chem. Chem. Phys. 2005, 7, 1905. DOI: 10.1039/b502109j
18) J. Friedrich, E. Perlt, M. Roatsch, C. Spickermann, B. Kirchner, J. Chem. Theory Comput. 2011, 7, 843. DOI: 10.1021/ct100131c
19) C. Spickermann, E. Perlt, M. von Domaros, M. Roatsch, J. Friedrich, B. Kirchner, J. Chem. Theory Comput. 2011, 7, 868. DOI: 10.1021/ct200074c
20) E. Perlt, J. Friedrich, M. v. Domaros, B. Kirchner, ChemPhysChem 2011, 12, 3474. DOI: 10.1002/cphc.201100592
21) M. Brüssel, E. Perlt, S. B. C. Lehmann, M. v. Domaros, B. Kirchner, J. Chem. Phys. 2011, 135, 194113. DOI: 10.1063/1.3662071
Image: © Wiley-VCH