Nachrichten aus der Chemie (the membership magazine of the GDCh) annually publishes trend reports in which authors spot and compile an overview of inspiring work and recent trends in the most important chemical disciplines.
ChemViews gives you an overview of the latest trend report, its authors and the literature collected.
Trends in Physical Chemistry 2011
R. Holze, T. Jacob, S. Schünke, P. Neudecker, D. Willbold
Electrochemistry is widely regarded as primarily the science of energy-storage and -conversion. This erroneous thematic restriction is detrimental to scientific interdisciplinary. This is of particular significance for the main industrial consumers of electrical energy for the electrolysis of chlorine and aluminum production.
There is a danger of thinned-out teaching and research in German universities. Corrective trends are only cautiously emerging.
Solution NMR spectroscopy has ventured into new areas: the characterization of mega-Dalton-sized systems and the determination of structure and dynamics of sparsely populated conformers of intrinsically unstructured proteins and membrane proteins.
► Full article (in German):
Trendbericht Physikalische Chemie 2011,
- Elektrochemie: Mehr als Lithiumionenbatterien,
R. Holze, T. Jacob,
Nachrichten aus der Chemie 2012, 60(3), 313–318.
- NMR-Spektroskopie biologischer Makromoleküle,
S. Schünke, P. Neudecker, D. Willbold
Nachrichten aus der Chemie 2012, 60(3), 319–322.
► All 2011 trend reports on ChemViews
Authors
Rudolf Holze graduated in chemistry from the University of Bonn, Germany, with a thesis on lithium-ion batteries and completed his Ph.D. there on electrochemical-impedance measurements. At the University of Oldenburg, Germany, he completed his Habilitation on methods for spectroelectrochemistry. Since 1993, he has been a Professor of Physical Chemistry and Electrochemistry at the Technical University of Chemnitz, Germany.
He is the author of more than 280 scientific publications, and the author, editor, and co-author of more than 10 books.
Timo Jacob, born 1975, studied physics at the University of Kassel, Germany, and obtained his Ph.D. there in 2002. From 2002 to 2004, he worked as a Postdoctoral Research Officer at the California Institute of Technology in Pasadena, USA. From 2004 to 2008, he worked as a Junior Research Group Leader, first at the Fritz-Haber-Institut of the Max-Planck Society in Berlin, and, from 2007, at the University of Ulm, both Germany. In 2008, he completed his Habilitation at the Free University of Berlin in Theoretical Physics. Last year, he became the Director of the Institute of Electrochemistry, University of Ulm, and his research interests include theorerical and experimental research at interfaces and electrocatalysis.
Sven Schünke, born 1978, studied biology in Düsseldorf, Germany, and obtained his Ph.D. in 2010 under Dieter Willbold at the Institute for Physical Biology at the Heinrich-Heine University Düsseldorf and at the Institute for Structural Biochemistry (ICS-6) at the Jülich Research Center on structure analysis using NMR spectroscopy. As a Postdoctoral Research Officer, he is working on the functional and structural characterization of neuronal and viral proteins.
Philipp Neudecker, born 1974, studied physics in Bayreuth, Germany, and Albany, New York, USA. After completing his Ph.D. in late 2003 under Paul Rösch at Bayreuth on the study of the structural biology of allergens by NMR spectroscopy, he worked as a Postdoctoral Fellow under Lewis Kay in Toronto, Canada, on the development of NMR-RD and its application to protein folding, misfolding, and aggregation. Recently, he has taken up a position as an Assistant Professor at the Institute for Physical Biology in Düsseldorf, Germany, and is interested in the study of the structure and dynamics of proteins by using NMR spectroscopy.
Dieter Willbold, born 1965, studied biochemistry in Tübingen, Bayreuth, both Germany, and Boulder, USA. He obtained his Ph.D. in 1994 under Paul Rösch at the Department of Biopolymers in Bayreuth. He obtained his Habilitation in 1998 and moved to the Institute for Molecular Biotechnology, Jena, Germany, the same year. In 2001, he accepted a call to go to Düsseldorf, Germany, where he has led the Institute of Physical Biology since 2006. Since 2005, he has also been the Director of the Institute for Structural Biochemistry (ICS-6) at the Jülich Research Center, Germany.
His research focuses on the structure, function, and manipulation of neuronal and viral proteins.
References
Electrochemisty
1) U. Krewer, Chem. Ing. Tech. 2011, 83, 1974. DOI: 10.1002/cite.201100084
2) J. B. Goodenough, Y. Kim, Chem. Mater. 2010, 22, 587. DOI: 10.1021/cm901452z
3) J. B. Goodenough, Y. Kim, J. Power Sources 2011, 196, 6688. DOI: http://dx.doi.org/10.1016/j.jpowsour.2010.11.074
4) R. Marom, S. F. Amalraj, N. Leifer, D. Jacob, D. Aurbach, J. Mater. Chem. 2011, 21, 9938. DOI: 10.1039/c0jm04225k
5) G. Neumann, Chem. Ing. Tech. 2011, 83, 2042. DOI: 10.1002/cite.201100075
6) J. Vetter, P. Novak, M. R. Wagner et al., J. Power Sources 2005, 147, 269. DOI: 10.1016/j.jpowsour.2005.01.006
7) M. Roberts, P. Johns, J. Owen et al., J. Mater. Chem. 2011, 21, 9876. DOI: 10.1039/c0jm04357e
8) J. Molenda, Funct. Mat. Lett. 2011, 4, 107. DOI: 10.1142/S1793604711001816
9) K. Xu, A. von Cresce, J. Mat. Chem. 2011, 21, 9849. DOI: 10.1039/c0jm04309e
10) M. Winter, Z. Phys. Chem. 2009, 223, 1395. DOI: 10.1524/zpch.2009.6086
11) H. P. Zhang, L. J. Fu, Y. P. Wu, H. Q. Wu, T. Takamura, R. Holze, Jord. J. Chem. 2010, 5, 283.
12) S.-T. Myung, Y. Hitoshi, Y.-K. Sun, J. Mater. Chem. 2011, 21, 9891. DOI: 10.1039/c0jm04353b
13) H.-J. Ahn, K.-W. Kim, J.-H. Ahn, G. Cheruvally, in Encyclopedia of Electrochemical Power Sources Vol. 5 (Eds. J. Garche, C. K. Dyer, P. T. Moseley, Z. Ogumi, D. A. J. Rand, B. Scrosati), Elsevier, Amsterdam, 2009, 155. ISBN: 978-0444520937
14) B. L. Ellis, K. T. Lee, L. F. Nazar, Chem. Mater. 2010, 22, 691. DOI: 10.1021/cm902696j
15) S. J. Visco, E. Nimon, L. C. De Jonghe, in Encyclopedia of Electrochemical Power Sources Vol. 4 (Eds. J. Garche, C. K. Dyer, P. T. Moseley, Z. Ogumi, D. A. J. Rand, B. Scrosati), Elsevier, Amsterdam, 2009, 376. ISBN: 978-0444520937
16) S.-R. Chen, Y.-P. Zhai, G.-L. Xu et al., Electrochim. Acta 2011, 56, 9549. DOI: 10.1016/j.electacta.2011.03.005
17) G. Girishkumar, B. McCloskey, A. C. Luntz, S. Swanson, W. Wilcke, J. Phys. Chem. Lett. 2010, 1, 2193. DOI: 10.1021/jz1005384
18) X. Ren, S. S. Zhang, D. T. Tran, J. Read, J. Mater. Chem. 2011, 21, 10118. DOI: 10.1039/c0jm04170j
19) A. J. Churchard, E. Banach, A. Borgschulte et al., Phys. Chem. Chem. Phys. 2011, 13, 16955. DOI: 10.1039/c1cp22312g
20) F. Schüth, Chem. Ing. Tech. 2011, 83, 1984. DOI: 10.1002/cite.201100147
21) A. Boddien, H. Junge, M. Beller, Nachr. Chem. 2011, 59, 1142. DOI: 10.1002/nadc.201290008
22) W. Vielstich, Brennstoffelemente, Verlag Chemie, Weinheim, 1965. Link
23) N. V. Rees, R. G. Compton, J. Solid State Electrochem. 2011, 15, 20095. DOI: 10.1007/s10008-011-1398-4
25) J. L. Sudworth, R. C. Galloway, in Encyclopedia of Electrochemical Power Sources Vol. 4 (Eds. J. Garche, C. K. Dyer, P. T. Moseley, Z. Ogumi, D. A. J. Rand, B. Scrosati), Elsevier, Amsterdam, 2009, 312. ISBN: 978-0444520937
26) X. C. Lu, G. G. Xia, J. P. Lemmon, Z. G. Yang, J. Power Sources 2010, 195, 2431. DOI: 10.1016/j.jpowsour.2009.11.120
27) R. Holze, in Encyclopedia of Electrochemical Power Sources Vol. 4 (Eds. J. Garche, C. K. Dyer, P. T. Moseley, Z. Ogumi, D. A. J. Rand, B. Scrosati), Elsevier, Amsterdam, 2009, 302. ISBN: 978-0444520937
28) A. Z. Weber, M. M. Mench, J. P. Meyers, P. N. Ross, J. T. Gostick, Q. Liu, J. Appl. Electrochem. 2011, 41, 1137. DOI: 10.1007/s10800-011-0348-2
29) M. J. Watt-Smith, R. G. A. Wills, F. C. Walsh, in Encyclopedia of Electrochemical Power Sources Vol. 5 (Eds. J. Garche, C. K. Dyer, P. T. Moseley, Z. Ogumi, D. A . J. Rand, B. Scrosati), Elsevier, Amsterdam, 2009, 438. ISBN: 978-0444520937
31) S. Kim, M. Vijayakumar, W. Wang et al., Phys. Chem. Chem. Phys. 2011, 13, 18186. DOI: 10.1039/c1cp22638j
32) B. E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Springer, New York, 1999. ISBN: 978-0306457364
33) R. Kötz, P. Dietrich, M. Hahn, F. Büchi, VDI Berichte 2005, 1874, 175. Link (pdf)
34) R. Kötz, M. Carlen, Electrochimica Acta 2000, 45, 2483. DOI: 10.1016/S0013-4686(00)00354-6
35) J. W. Long, Interface 2008, 17(1), 33. Link
36) J. R. Miller, R. A. Outlaw, B. C. Holloway, Electrochim. Acta 2011, 56, 10443. DOI: 10.1016/j.electacta.2011.05.122
37) J. J. Yoo, K. Balakrishnan, J. Huang et al., Nano Letters 2011, 11, 1423. DOI: 10.1021/nl200225j
38) J. G. Radich, P. J. McGinn, P. V. Kamat, Interface 2011, 20(1), 63. Link
39) P. Simon, A. Burke, Interface 2008, 17(1), 38. Link
40) D. R. MacFarlane, M. Forsyth, P. C. Howlett et al., Acc. Chem. Res. 2007, 40, 1165. DOI: 10.1021/ar7000952
41) D. R. MacFarlane, K. Fraser, P. Bayley, 61st Annual Meeting of the International Society of Electrochemistry, Nizza, 26. September – 1. October 2010.
42) H. Tokuda, S. Tsuzuki, M. A. B. H. Susan, M. Watanabe, J. Phys. Chem. B 2006, 110, 19593. DOI: 10.1021/jp064159v
43) B. Kirchner, Ionic Liquids, Topics in Current Chemistry 2010, Vol. 290. ISBN: 978-3-642-01779-7
44) F. Endres, Chem. Ing. Tech. 2011, 83, 1485. DOI: 10.1002/cite.201100038
45) F. Endres, A. P. Abbott, D. R. MacFarlane, (Eds.), Electrodeposition from Ionic Liquids, Wiley-VCH, Weinheim, 2008. ISBN: 9783527315659
46) Q. B. Zhang, Y. X. Hua, Electrochim. Acta 2009, 54, 1881. DOI: 10.1016/j.electacta.2008.10.025
47) T. Khoo, P. C. Howlett, M. Tsagouria, D. R. MacFarlane, M. Forsyth, Electrochim. Acta 2011, 58, 583. DOI: 10.1016/j.electacta.2011.10.006
48) S. Kim, M. Vijayakumar, W. Wang et al., Phys. Chem. Chem. Phys. 2011, 13, 18186. DOI: 10.1039/c1cp22638j
49) N. Serizawa, S. Seki, S. Tsuzuki et al., J. Electrochem. Soc. 2011, 158, A1023. DOI: 10.1149/1.3613959
50) G. B. Appetecchi, G. T. Kim, M. Montanino et al., J. Power Sources 2011, 196, 6703. DOI: 10.1016/j.jpowsour.2010.11.070
51) R. Holze, Electrochim. Acta 2011, 56, 10479. DOI: 10.1016/j.electacta.2011.04.013
52) U. Guth, W. Vonau, J. Zosel, Measurement Sci. Technol. 2009, 20, 42002. DOI: 10.1088/0957-0233/20/4/042002
53) For example see: M. P. N. Bui, X. H. Pham, K. N. Nan, Sens. Act. B 2010, 150, 436. DOI: 10.1016/j.snb.2010.06.019
54) S. Fierro, N. Mitani, C. Comninellis, Y. Einaga, Phys. Chem. Chem. Phys. 2011, 13, 16795. DOI: 10.1039/c1cp21962f
55) J. O’M. Bockris, A. K. N. Reddy, Modern Eletrochemistry 1, Kluwer, Dordrecht, 1998. ISBN: 978-0-306-45554-4
56) V. Di Noto, S. Lavina, G. A. Giffin, B. Scrosati, Electrochim. Acta 2011, 57, 4. DOI: 10.1016/j.electacta.2011.08.048
57) T. Okumura, T. Nakatsutsumi, T. Ina et al., J. Mater. Chem. 2011, 21, 10051. DOI: 10.1039/c0jm04366d
NMR Spectroscopy of Biological Macromolecules
1) B. M. Burmann, K. Schweimer, X. Luo, M. C. Wahl, B. L. Stitt, M. E. Gottesman, P. Rösch, Science 2010, 328, 501. DOI: 10.1126/science.1184953
2) M. R. Jensen, G. Communie, E. A. Ribeiro et al., Proc. Natl. Acad. Sci. USA 2011, 108, 9839. DOI: 10.1073/pnas.1103270108
3) K. Sugase, H. J. Dyson, P. E. Wright, Nature 2007, 447, 1021. DOI: 10.1038/nature05858
4) T. Mittag, S. Orlicky, W.-Y. Choy et al., Proc. Natl. Acad. Sci. USA 2008, 105, 17772. DOI: 10.1073/pnas.0809222105
5) G. Otting, Annu. Rev. Biophys. 2010, 39, 387. DOI: 10.1146/annurev.biophys.093008.131321
6) C. Tang, J. Iwahara, G. M. Clore, Nature 2006, 444, 383. DOI: 10.1038/nature05201
7) P. Neudecker, A. Zarrine-Afsar, W.-Y. Choy, D. R. Muhandiram, A. R. Davidson, L. E. Kay, J. Mol. Biol. 2006, 363, 958. DOI: 10.1016/j.jmb.2006.08.047
8) P. Vallurupalli, D. F. Hansen, L. E. Kay, Proc. Natl. Acad. Sci. USA 2008, 105, 11766. DOI: 10.1073/pnas.0804221105
9) D. M. Korzhnev, T. L. Religa, W. Banachewicz, A. R. Fersht, L. E. Kay, Science 2010, 329, 1312. DOI: 10.1126/science.1191723
10) G. Bouvignies, P. Vallurupalli, D. F. Hansen et al., Nature 2011, 477, 111. DOI: 10.1038/nature10349
11) P. Neudecker, A. Zarrine-Afsar, A. R. Davidson, L. E. Kay, Proc. Natl. Acad. Sci. USA 2007, 104, 15717. DOI: 10.1073/pnas.0705097104
12) O. F. Lange, N.-A. Lakomek, C. Farès et al., Science 2008, 320, 1471. DOI: 10.1126/science.1157092
13) M. R. Jensen, P. R. L. Markwick, S. Meier, Structure 2009, 17, 1169. DOI: 10.1016/j.str.2009.08.001
14) U. Weininger, R. P. Jakob, B. Eckert et al., Proc. Natl. Acad. Sci. USA 2009, 106, 12335. DOI: 10.1073/pnas.0902102106
15) P. Schanda, B. Brutscher, R. Konrat, M. Tollinger, J. Mol. Biol. 2008, 380, 726. DOI: 10.1016/j.jmb.2008.05.040
16) P. Schanda, V. Forge, B. Brutscher, Proc. Natl. Acad. Sci. USA 2007, 104, 11257. DOI: 10.1073/pnas.0702069104
17) C. Amero, P. Schanda, M. A. Duraì et al., J. Am. Chem. Soc. 2009, 131, 3448. DOI: 10.1021/ja809880p
18) S. Schünke, M. Stoldt, J. Lecher, U. B. Kaupp, D. Willbold, Proc. Natl. Acad. Sci. USA 2011, 108, 6121. DOI: 10.1073/pnas.1015890108
19) S. Schünke, M. Stoldt, K. Novak, U. B. Kaupp, D. Willbold, EMBO Rep. 2009, 10, 729. DOI: 10.1038/embor.2009.68
20) V. Tugarinov, W.-Y. Choy, V. Y. Orekhov, L. E. Kay, Proc. Natl. Acad. Sci. USA 2005, 102, 622. DOI: 10.1073/pnas.0407792102
21) R. Sprangers, L. E. Kay, Nature 2007, 445, 618. DOI: 10.1038/nature05512
22) A. M. Ruschak, T. L. Religa, S. Breuer, S. Witt, L. E. Kay, Nature 2010, 467, 868. DOI: 10.1038/nature09444
23) I. Gelis, A. M. J. J. Bonvin, D. Keramisanou et al., Cell 2007, 131, 756. DOI: 10.1016/j.cell.2007.09.039
24) T. H. Bayburt, S. G. Sligar, FEBS Letters 2010, 584, 1721. DOI: 10.1016/j.febslet.2009.10.024
25) J. M. Glück, M. Wittlich, S. Feuerstein et al., J. Am. Chem. Soc. 2009, 131, 12060. DOI: 10.1021/ja9097498
26) T. Raschle, S. Hiller, T.-Y. Yu et al., J. Am. Chem. Soc. 2009, 131, 17777. DOI: 10.1021/ja907918r
27) P. Ma, J. Mohrlüder, M. Schwarten et al., ChemBioChem 2010, 11, 1967. DOI: 10.1002/cbic.201000354
28) M. Bayrhuber, T. Meins, M. Habeck et al., Proc. Natl. Acad. Sci. USA 2008, 105, 15370. DOI: 10.1073/pnas.0808115105
29) A. Gautier, H. R. Mott, M. J. Bostock, J. P. Kirkpatrick, D. Nietlispach, Nat. Struct. Mol. Biol. 2010, 17, 768. DOI: 10.1038/nsmb.1807
30) S. Reckel, D. Gottstein, J. Stehle et al., Angew. Chem. Int. Ed. 2011, 50, 11942. DOI: 10.1002/anie.201105648