Co3O4 for Water Electrolysis

Co3O4 for Water Electrolysis

Author: Angewandte Chemie International Edition

Electrochemical water splitting is important for renewable energy technologies, such as hydrogen fuel production and rechargeable metal-air batteries. A variety of earth-abundant and cost-effective electrocatalysts have been developed as catalysts for water electrolysis. However, further improvement of the electrochemical performance remains challenging.

Shi-Zhang Qiao, University of Adelaide, Australia, and colleagues have developed an electrochemical self-templating strategy to prepare hollow Co3O4 microtube arrays. CoHPO4 microrods with relatively low stability were first grown on a nickel foam. A subsequent potentiostat treatment in alkaline media resulted in the transformation of protonated CoHPO4 microrods into hollow Co3O4 microtubes with hierarchical porosity and high surface area.

The resulting self-supported catalysts can be directly used in catalyzing oxygen and hydrogen evolution. In overall water electrolysis, the catalyst provides a current density of 10 mA m–2 at 400 mV overpotential, along with a high durability. The microtubes surpass the performance of the precious-metal catalysts IrO2/C and Pt/C.


 

Leave a Reply

Kindly review our community guidelines before leaving a comment.

Your email address will not be published. Required fields are marked *