2011 Trends in Organic Chemistry

2011 Trends in Organic Chemistry

Author: ChemViews/GDCh

Nachrichten aus der Chemie (the membership magazine of the GDCh) annually publishes trend reports in which authors spot and compile an overview of inspiring work and recent trends in the most important chemical disciplines.

ChemViews gives you an overview of the latest trend report, its authors and the literature collected.

Trends in Organic Chemistry 2011

S. Bräse et al.

  • Highlights of the year
    Organic solar cells — origami techniques — photoresponsive organocatalysts — fluorination — the cleavage of formic acid — and click chemistry to RNA.

► Full article (in German):

All 2011 trend reports on ChemViews

Authors

The organic chemistry trend report 2011 had 31 authors, whose names can be found in the full article. Stefan Bräse, Institute of Organic Chemistry, Karlsruher Institute of Technology (KIT), was the coordinator of the report.

Stefan BräseSince 2001, Stefan Bräse has been a Professor of Organic Chemistry, first in Bonn, and then in Karlsruhe from 2003. He studied chemistry at the University of Göttingen, Germany, with Armin de Meijere, was a postdoctoral fellow in Uppsala, Sweden, with Jan Bäckvall and in La Jolla, USA, with K.C. Nicolaou, and became a professor at the RWTH Aachen, Germany, under the supervision of Dieter Enders.

His research interests include solid-phase synthesis, asymmetric catalysis, and the total synthesis of natural products.

Since 2005, he has coordinated the Organic Chemistry trend reports.

References

Organic Solid State and Materials Chemistry

1) Y. Sun, G. C. Welch, W. L. Leong, C. J. Takacs, G. C. Bazan, A. J. Heeger, Nat. Mater. 2012, 11, 44–48. DOI: 10.1038/nmat3160
2) A. Ojala, H. Bürckstümmer, M. Stolte, R. Sens, H. Reichelt, P. Erk, J. Hwang, D. Hertel, K. Meerholz, F. Würthner, Adv. Mater. 2011, 23, 5398–5403. DOI: 10.1002/adma.201103167
3) K. Nakayama, Y. Hirose, J. Soeda, M. Yoshizumi, T. Uemura, M. Uno, W. Li, M. J. Kang, M. Yamagishi, Y. Okada, E. Miyazaki, Y. Nakazawa, A. Nakao, K. Takimiya, J. Takeya, Adv. Mater. 2011, 23, 1626–1629. DOI: 10.1002/adma.201004387
4) H. Minemawari, T. Yamada, H. Matsui, J. Tsutsumi, S. Haas, R. Chiba, R. Kumai, T. Hasegawa, Nature 2011, 475, 364–367. DOI: 10.1038/nature10313
5) Y. Morita, S. Nishida, T. Murata, M. Moriguchi, A. Ueda, M. Satoh, K. Arifuku, K. Sato, T. Takui, Nat. Mater. 2011, 10, 947–951: DOI: 10.1038/nmat3142
6) Y. Kou, Y. Xu, Z. Guo, D. Jiang, Angew. Chem. 2011, 123, 8912–8916. DOI: 10.1002/ange.201103493; Angew. Chem. Int. Ed. 2011, 50, 8753–8757. DOI: 10.1002/anie.201103493
7) J. T. A. Jones, D. Holden, T. Mitra, T. Hasell, D. J. Adams, K. E. Jelfs, A. Trewin, D. J. Willock, G. M. Day, J. Bacsa, A. Steiner, A. I. Cooper, Angew. Chem. 2011, 123, 775–779. DOI: 10.1002/ange.201006030; Angew. Chem. Int. Ed. 2011, 50, 749–753. DOI: 10.1002/anie.201006030
8) L. Jiménez-García, A. Kaltbeitzel, V. Enkelmann, J. S. Gutmann, M. Klapper, K. Müllen, Adv. Funct. Mater. 2011, 21, 2216–2224. DOI: 10.1002/adfm.201002357

Organic Nanostructures

9) C.-H. Li, K.-C. Chang, C.-C. Tsou, Y. Lan, H.-C. Yang, S.-S. Sun, J. Org. Chem. 2011, 76, 5524–5530. DOI: 10.1021/jo200573y
10) W. Si, X.-B. Hu, X.-H. Liu, R.-H. Fan, Z.-X. Chen, L.-H. Weng, J.-L. Hou, Tetrahedron Lett. 2011, 52, 2484–2487. DOI: 10.1016/j.tetlet.2011.03.019
11) M. Mastalerz, M. W. Schneider, I. M. Oppel, O. Presly, Angew. Chem. 2011, 123, 1078–1083. DOI: 10.1002/ange.201005301; Angew. Chem. Int. Ed. 2011, 50, 1046–1051. DOI: 10.1002/anie.201005301
12) M.-L. Yen, N.-C. Chen, C.-C. Lai, Y.-H. Liu, S.-M. Peng, S.-H. Chiu, Dalton Trans. 2011, 40, 2163–2166. DOI: 10.1039/c0dt00375a
13) D. Han, S. Pal, J. Nangreave, Z. Deng, Y. Liu, H. Yan, Science 2011, 332, 342–346. DOI: 10.1126/science.1202998
14) S. Kuhn, U. Jung, S. Ulrich, R. Herges, O. Magnussen, Chem. Commun. 2011, 47, 8880–8882. DOI: 10.1039/c1cc12598b
15) S. Haq, F. Hanke, M. S. Dyer, M. Persson, P. Iavicoli, D. B. Amabilino, R. Raval, J. Am. Chem. Soc. 2011, 133, 12031–12039. DOI: 10.1021/ja201389u

Liquid Crystals

16) F. Liu, M. Prehm, X. Zeng, G. Ungar, C. Tschierske, Angew. Chem. 2011, 123, 10787–10790. DOI: 10.1002/ange.201103303; Angew. Chem. Int. Ed. 2011, 50, 10599–10602. DOI: 10.1002/anie.201103303
17) I. Tahar-Djebbar, F. Nekelson, B. Heinrich, B. Donnio, D. Guillon, D. Kreher, F. Mathevet, A.-J. Attias, Chem. Mater. 2011, 23, 4653–4656. DOI: 10.1021/cm2014187
18) D. Miyajima, F. Araoka, H. Takezoe, J. Kim, K. Kato, M. Takata, T. Aida, Angew. Chem. 2011, 123, 8011–8015. DOI: 10.1002/ange.201102472; Angew. Chem. Int. Ed. 2011, 50, 7865–7869. DOI: 10.1002/anie.201102472
19) E. M. García-Frutos, U. K. Pandey, R. Termine, A. Omenat, J. Barberá, J. L. Serrano, A. Golemme, B. Gómez-Lor, Angew. Chem. 2011, 123, 7537–7540. DOI: 10.1002/ange.201005820; Angew. Chem. Int. Ed. 2011, 50, 7399–7402. DOI: 10.1002/anie.201005820
20) Q. Ye, J. Chang, K.-W. Huang, C. Chi, Org. Lett. 2011, 13, 5960–5963. DOI: 10.1021/ol202357f
21) X. Kong, Z. He, Y. Zhang, L. Mu, C. Liang, B. Chen, X. Jing, A. N. Cammidge, Org. Lett. 2011, 13, 764–767. DOI: 10.1021/ol103018v
22) H. Hayashi, W. Nihashi, T. Umeyama, Y. Matano, S. Seki, Y. Shimizu, H. Imahori, J. Am. Chem. Soc. 2011, 133, 10736–10739. DOI: 10.1021/ja203822q
23) M. Fritzsche, A. Bohle, D. Dudenko, U. Baumeister, D. Sebastiani, G. Richardt, H. W. Spiess, M. R. Hansen, S. Höger, Angew. Chem. 2011, 123, 3086–3089. DOI: 10.1002/ange.201007437; Angew. Chem. Int. Ed. 2011, 50, 3030–3033. DOI: 10.1002/anie.201007437
24) T. Ichikawa, M. Yoshio, A. Hamasaki, J. Kagimoto, H. Ohno, T. Kato, J. Am. Chem. Soc. 2011, 133, 2163–2169. DOI: 10.1021/ja106707z
25) Y. Ishida, A. S. Achalkumar, S.-y. Kato, Y. Kai, A. Misawa, Y. Hayashi, K. Yamada, Y. Matsuoka, M. Shiro, K. Saigo, J. Am. Chem. Soc. 2010, 132, 17435–17446. DOI: 10.1021/ja105221u

Photochemistry
26) J. Wang, B. L. Feringa, Science 2011, 331, 1429–1432. DOI: 10.1126/science.1199844
27) T. Bach, J. P. Hehn, Angew. Chem. 2011, 123, 1032–1077. DOI: 10.1002/ange.201002845; Angew. Chem. Int. Ed. 2011, 50, 1000–1045. DOI: 10.1002/anie.201002845
28) O. A. Mukhina, N. N. B. Kumar, T. M. Arisco, R. A. Valiulin, G. A. Metzel, A. G. Kutateladze, Angew. Chem. 2011, 123, 9595–9600. DOI: 10.1002/ange.201103597; Angew. Chem. Int. Ed. 2011, 50, 9423–9428. DOI: 10.1002/anie.201103597
29) P. Wessig, A. Matthes, J. Am. Chem. Soc. 2011, 133, 2642–2650. DOI: 10.1021/ja109118m
30) Y.-Q. Zou, L.-Q. Lu, L. Fu, N.-J. Chang, J. Rong, J.-R. Chen, W.-J. Xiao, Angew. Chem. 2011, 123, 7309–7313. DOI: 10.1002/ange.201102306; Angew. Chem. Int. Ed. 2011, 50, 7171–7175. DOI: 10.1002/anie.201102306
31) I. Ryu, A. Tani, T. Fukuyama, D. Ravelli, M. Fagnoni, A. Albini, Angew. Chem. 2011, 123, 1909–1912. DOI: 10.1002/ange.201004854; Angew. Chem. Int. Ed. 2011, 50, 1869–1872. DOI: 10.1002/anie.201004854
32) K. A. B. Austin, E. Herdtweck, T. Bach, Angew. Chem. 2011, 123, 8566–8569. DOI: 10.1002/ange.201103051; Angew. Chem. Int. Ed. 2011, 50, 8416–8419. DOI: 10.1002/anie.201103051

Organic Dyes

33) Y. Qian, J. Karpus, O. Kabil, S.-Y. Zhang, H.-L. Zhu, R. Banerjee, J. Zhao, C. He, Nat. Commun. 2011, 2, 495. DOI: 10.1038/ncomms1506
34) A. R. Lippert, E. J. New, C. J. Chang, J. Am. Chem. Soc. 2011, 133, 10078–10080. DOI: 10.1021/ja203661j
35) J. Rayo, N. Amara, P. Krief, M. M. Meijler, J. Am. Chem. Soc. 2011, 133, 7469–7475. DOI: 10.1021/ja200455d
36) G. M. van Dam, G. Themelis, L. M. A. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. G. Arts, A. G. J. van der Zee, J. Bart, P. S. Low, V. Ntziachristos, Nat. Med. 2011, 17, 1315–1320. DOI: 10.1038/nm.2472
37) M. Neumann, S. Füldner, B. König, K. Zeitler, Angew. Chem. 2011, 123, 981–985. DOI: 10.1002/ange.201002992; Angew. Chem. Int. Ed. 2011, 50, 951–954. DOI: 10.1002/anie.201002992
38) O. Sinai, D. Avnir, Chem. Mater. 2011, 23, 3289–3295. DOI: 10.1021/cm2000655
39) R. O. MacRae, C. M. Pask, L. K. Burdsall, R. S. Blackburn, C. M. Rayner, P. C. McGowan, Angew. Chem. 2011, 123,  305–308. DOI: 10.1002/ange.201004920; Angew. Chem. Int. Ed. 2011, 50, 291–294. DOI: 10.1002/anie.201004920
40) N. C. Tansil, Y. Li, C. P. Teng, S. Zhang, K. Y. Win, X. Chen, X. Y. Liu, M.-Y. Han, Adv. Mater. 2011, 23, 1463–1466. DOI: 10.1002/adma.201003860

Heterocycles

41) K. Ueda, S. Yanagisawa, J. Yamaguchi, K. Itami, Angew. Chem. 2010, 122, 9130–9133. DOI: 10.1002/ange.201005082; Angew. Chem. Int. Ed. 2010, 49, 8946–8949. DOI: 10.1002/anie.201005082
42) Q. Liao, L. Zhang, S. Li, C. Xi, Org. Lett. 2011, 13, 228–231. DOI: 10.1021/ol1026365
43) G. Dickmeiss, K. L. Jensen, D. Worgull, P. T. Franke, K. A. Jørgensen, Angew. Chem. 2011, 123, 1618–1621. DOI: 10.1002/ange.201006608
44) H. Ishikawa, S. Sawano, Y. Yasui, Y. Shibata, Y. Hayashi, Angew. Chem. 2011, 123, 3858–3863. DOI: 10.1002/ange.201005386; Angew. Chem. Int. Ed. 2011, 50, 3774–3779. DOI: 10.1002/anie.201005386
45) E. Merkul, J. Dohe, C. Gers, F. Rominger, T. J. J. Müller, Angew. Chem. 2011, 123, 3023–3026. DOI: 10.1002/ange.201007194; Angew. Chem. Int. Ed. 2011, 50, 2966–2969. DOI: 10.1002/anie.201007194
46) D. McAusland, S. Seo, D. G. Pintori, J. Finlayson, M. F. Greaney, Org. Lett. 2011, 13, 3667–3669. DOI: 10.1021/ol201413r


Tetrapyrroles

47) E. Vogel, Angew. Chem. 2011, 123, 4366–4375. DOI: 10.1002/ange.201101347; Angew. Chem. Int. Ed. 2011, 50, 2436–2438. DOI: 10.1002/anie.201101347
48) C. Maeda, T. Yoneda, N. Aratani, M.-C. Yoon, J. M. Lim, D. Kim, N. Yoshioka, A. Osuka, Angew. Chem. 2011, 123, 5809–5812. DOI: 10.1002/ange.201101864; Angew. Chem. Int. Ed. 2011, 50, 5691–5694. DOI: 10.1002/anie.201101864
49) K. Arnold, H. Norouzi-Arasi, M. Wagner, V. Enkelmann, K. Müllen, Chem. Commun. 2011, 47, 970–972. DOI: 10.1039/C0CC03052J
50) L. K. Frensch, K. Pröpper, M. John, S. Demeshko, C. Brückner, F. Meyer, Angew. Chem. 2011, 123, 1456–1460. DOI: 10.1002/ange.201005780; Angew. Chem. Int. Ed. 2011, 50, 1420–1424. DOI: 10.1002/anie.201005780
51) M. Stepien, N. Sprutta, L. Latos-Grazynski, Angew. Chem. 2011, 123, 4376–4430. DOI: 10.1002/ange.201003353; Angew. Chem. Int. Ed. 2011, 50, 4288–4340. DOI: 10.1002/anie.201003353
52) P. Fackler, C. Berthold, F. Voss, T. Bach, J. Am. Chem. Soc. 2010, 132, 15911–15913. DOI: 10.1021/ja107601k

Green Chemistry

53) E. Balaraman, C. Gunanathan, J. Zhang, L. J. W. Shimon, D. Milstein, Nat. Chem. 2011, 3, 609–614. DOI: 10.1038/nchem.1089
54) C. A. Huff, M. S. Sanford, J. Am. Chem. Soc. 2011, 133, 18122–18125. DOI: 10.1021/ja208760j
55) G. A. Olah, A. Goeppert, G. K. S. Prakash, Beyond Oil and Gas: The Methanol Economy, Wiley-VCH, Weinheim 2006. ISBN: 978-3-527-32422-4
56) F. Barzagli, F. Mani, M. Peruzzini, Green Chem. 2011, 13, 1267–1274. DOI: 10.1039/c0gc00674b
57) P. M. Foley, E. S. Beach, J. B. Zimmerman, Green Chem. 2011, 13, 1399–1405. DOI: 10.1039/c1gc00015b

Base and Fine Chemicals

58) R. Langer, G. Leitus, Y. Ben-David, D. Milstein, Angew. Chem. 2011, 123, 2168–2172. DOI: 10.1002/ange.201007406; Angew. Chem. Int. Ed. 2011, 50, 2120–2124. DOI: 10.1002/anie.201007406
59) H. Zeng, Z. Guan, J. Am. Chem. Soc. 2011, 133, 1159–1161. DOI: 10.1021/ja106958s
60) A. Bigot, A. E. Williamson, M. Gaunt, J. Am. Chem. Soc. 2011, 133, 13778–13781. DOI: 10.1021/ja206047h
61) J. S. Harvey, S. P. Simonovich, C. R. Jamison, D. W. C. MacMillan, J. Am. Chem. Soc. 2011, 133, 13782–13785. DOI: 10.1021/ja206050b

Metal-Free Synthesis

62) X. Tian, C. Cassani, Y. Liu, A. Moran, A. Urakawa, P. Galzerano, E. Arceo, P. Melchiorre, J. Am. Chem. Soc. 2011, 133, 17934–17941. DOI: 10.1021/ja207847p
63) J. A. Birrell, J.-N. Derosiers, E. N. Jacobsen, J. Am. Chem. Soc. 2011, 133, 13872–13875. DOI: 10.1021/ja205602j
64) I. Piel, M. Steinmetz, K. Hirano, R. Fröhlich, S. Grimme, F. Glorius, Angew. Chem. 2011, 123, 5087–5091. DOI: 10.1002/ange.201008081; Angew. Chem. Int. Ed. 2011, 50, 4983–4987. DOI: 10.1002/anie.201008081

Metal-based Methods for Synthesis

65) E. Lee, A. S. Chalet, D. C. Powers, C. N. Neumann, G. B. Boursalian, T. Furuya, D. C. Choi, J. M. Hooker, T. Ritter, Science 2011, 334, 639. DOI: 10.1126/science.1212625
66) M. Nakanishi, D. Katayev, C. Besnard, E. P. Kündig, Angew. Chem. 2011, 123, 7576–7579. DOI: 10.1002/ange.201102639; Angew. Chem. Int. Ed. 2011, 50, 7438–7441. DOI: 10.1002/anie.201102639
67) K. Takenaka, S. Hashimoto, S. Takizawa, H. Sasai, Adv. Synth. Catal. 2011, 353, 1067. DOI: 10.1002/adsc.201000926
68) Y. Izawa, D. Pun, S. S. Stahl, Science 2011, 333, 209. DOI: 10.1126/science.1204183
69) T. Diao, S. S. Stahl, J. Am. Chem. Soc. 2011, 133, 14566. DOI: 10.1021/ja206575j
70) T. Diao, T. J. Wadzinski, S. S. Stahl, Chem. Sci. 2012, 3, 887–891. DOI: 10.1039/C1SC00724F

Organometallics: Structures and Mechanisms

71) a) T. Fujihara, T. Xu, K. Semba, J. Terao, Y. Tsuji, Angew. Chem. 2011, 123, 543–547. DOI: 10.1002/ange.201006292; Angew. Chem. Int. Ed. 2011, 50, 523–527. DOI: 10.1002/anie.201006292; b) Review: Y. Zhang, S. N. Riduan, Angew. Chem. 2011, 123, 6334–6336. DOI: 10.1002/ange.201101341; Angew. Chem. Int. Ed. 2011, 50, 6210–6212. DOI: 10.1002/anie.201101341
72) a) C. Federsel, A. Boddien, R. Jackstell, R. Jennerjahn, P. J. Dyson, R. Scopelliti, G. Laurenczy, M. Beller, Angew. Chem. 2010, 122, 9971–9974. DOI: 10.1002/ange.201004263; Angew. Chem. Int. Ed. 2011, 50, 9777–9780. DOI: 10.1002/anie.201004263; b) A. Boddien, D. Mellmann, F. Gärtner, R. Jackstell, H. Junge, P. J. Dyson, G. Laurenczy, R. Ludwig, M. Beller, Science 2011, 333, 1733–1736. DOI: 10.1126/science.1206613
73) a) E. Balaraman, B. Gnanaprakasam, L. J. W. Shimon, D. Milstein, J. Am. Chem. Soc. 2010, 132, 16756–16758. DOI: 10.1021/ja1080019; b) B. Gnanaprakasam, D. Milstein, J. Am. Chem. Soc. 2011, 133, 1682–1685. DOI: 10.1021/ja109944n

Computational Organic Chemistry

74) A. Evidente, A. H. Abou-Donia, F. A. Darwish, M. E. Amer, F. F. Kassem, H. A. M. Hammoda, A. Motta, Phytochemistry 1999, 51, 1151. DOI: 10.1016/S0031-9422(98)00714-6
75) B. D. Schwartz, M. T. Jones, M. G. Banwell, I. A. Cade, Org. Lett. 2010, 12, 5210. DOI: 10.1021/ol102249q
76) M. W. Lodewyk, D. J. Tantillo, J. Nat. Prod. 2011, 74, 1339. DOI: 10.1021/np2000446
77) S. G. Smith, J. M. Goodman, J. Am. Chem. Soc. 2010, 132, 12946–12949. DOI: 10.1021/ja105035r
78) http://www-jmg.ch.cam.ac.uk/tools/nmr/nmrParameters.html
79) M. E. Harding, J. Gauss, P. R. Schleyer, J. Phys. Chem. 2011, 115, 2340–2344. DOI: 10.1021/jp1103356
80) S. Grimme, P. R. Schreiner, Angew. Chem. 2011, 123, 12849–12853. DOI: 10.1002/ange.201103615
81) S. Grimme, R. Huenerbein, S. Ehrlich, ChemPhysChem 2011, 12, 1258. DOI: 10.1002/cphc.201100127
82) P. R. Schreiner, L. V. Chernish, P. A. Gunchenko, E. Y. Tikhonchuk, H. Hausmann, M. Serafin, S. Schlecht, J. E. P. Dahl, R. M. K. Carlson, A. A. Fokin, Nature 2011, 477, 308–311. DOI: 10.1038/nature10367


Mass Spectrometry in Organic Chemistry

83) A. Nagy, J. Fulara, I. Garkusha, J. P. Maier, Angew. Chem. 2011, 123, 3078–3081. DOI: 10.1002/ange.201008036; Angew. Chem. Int. Ed. 2011, 50, 3022–3025. DOI: 10.1002/anie.201008036
84) Á. Révész, D. Schröder, T. A. Rokob, M. Havlík, B. Dolenský, Angew. Chem. 2011, 123, 2449–2452. DOI: 10.1002/ange.201007162; Angew. Chem. Int. Ed. 2011, 50, 2401–2404. DOI: 10.1002/anie.201007162
85) Y. Kwon, S. Lee, D.-C. Oh, S. Kim, Angew. Chem. 2011, 123, 8425–8428. DOI: 10.1002/ange.201102634; Angew. Chem. Int. Ed. 2011, 50, 8275–8278. DOI: 10.1002/anie.201102634
86) Y.-B. Kang, L. H. Gade, J. Am. Chem. Soc. 2011, 133, 3658–3667. DOI: 10.1021/ja110805b
87) D. Agrawal, D. Schröder, Organometallics 2011, 30, 32–35. DOI: 10.1021/om100972n
88) R. H. Perry, M. Splendore, A. Chien, N. K. Davis, R. N. Zare, Angew. Chem. 2011, 123, 264–268. DOI: 10.1002/ange.201004861; Angew. Chem. Int. Ed. 2011, 50, 250–254. DOI: 10.1002/anie.201004861
89) K. L. Vikse, Z. Ahmadi, C. C. Manning, D. A. Harrington, J. S. McIndoe, Angew. Chem. 2011, 123, 8454–8456. DOI: 10.1002/ange.201102630; Angew. Chem. Int. Ed. 2011, 50, 8304–8306. DOI: 10.1002/anie.201102630
90) C. Adlhart, P. Chen, Helv. Chim. Acta 2000, 83, 2192–2196. 3.0.CO;2-G”>DOI: 10.1002/1522-2675(20000906)83:9<2192::AID-HLCA2192>3.0.CO;2-G
91) E. Sokol, R. J. Noll, R. G. Cooks, L. W. Beegle, H. I. Kim, I. Kanik, Int. J. Mass Spectrom. 2011, 306, 187–195. DOI: 10.1016/j.ijms.2010.10.019


Natural Products

92) T. Wakimoto, T. Asakawa, S. Akahoshi, T. Suzuki, K. Nagai, H. Kawagishi, T. Kan, Angew. Chem. 2011, 123, 1200–1202. DOI: 10.1002/ange.201004646; Angew. Chem. Int. Ed. 2011, 50, 1168–1170. DOI: 10.1002/anie.201004646
93) M. I. Fekry, J. Szekely, S. Dutta, L. Breydo, H. Zang, K. S. Gates, J. Am. Chem. Soc. 2011, 133, 17641–17651. DOI: 10.1021/ja2046149
94) I. Paterson, S. M. Dalby, J. C. Roberts, G. J. Naylor, E. A. Guzmán, R. Isbrucker, T. P. Pitts, P. Linley, D. Divlianska, J. K. Reed, A. E. Wright, Angew. Chem. 2011, 123, 3277–3281. DOI: 10.1002/ange.201007719; Angew. Chem. Int. Ed. 2011, 50, 3219–3223. DOI: 10.1002/anie.201007719
95) M. R. Seyedsayamdost, G. Carr, R. Kolter, J. Clardy, J. Am. Chem. Soc. 2011, 133, 18343–18349. DOI: 10.1021/ja207172s
96) L. Ding, A. Maier, H.-H. Fiebig, H. Görls, W.-H. Lin, G. Peschel, C. Hertweck, Angew. Chem. 2011, 123, 1668–1672. DOI: 10.1002/ange.201006165v; Angew. Chem. Int. Ed. 2011, 50, 1630–1634. DOI: 10.1002/anie.201006165
97) Y.-C. Lin, I.-W. Lo, S.-Y. Chen, P.-H. Lin, C.-T. Chien, S.-y. Chang, Y.-C. Shen, Org. Lett. 2011, 13, 446–449. DOI: 10.1021/ol102772j
98) X.-N. Li, Y. Zhang, X.-H. Cai, T. Feng, Y.-P. Liu, Y. Li, J. Ren, H.-J. Zhu, X.-D. Luo, Org. Lett. 2011, 13, 5896–5899. DOI: 10.1021/ol202536b
99) R. D. Kersten, Y.-L. Yang, Y. Xu, P. Cimermancic, S.-J. Nam, W. Fenical, M. A. Fischbach, B. S. Moore, P. C. Dorrestein, Nat. Chem. Biol. 2011, 7, 794–802. DOI: 10.1038/nchembio.684

Natural Products: Total Synthesis

100) B. Halford, C&EN 2011, 89, 10–17. Link
101) Y. Lu, S. K. Woo, M. J. Krische, J. Am. Chem. Soc. 2011, 133, 13876–13879. DOI: 10.1021/ja205673e
102) B. M. Trost, G. Dong, J. Am. Chem. Soc. 2010, 132, 16403–16416. DOI: 10.1021/ja105129p
103) a) G. E. Keck, Y. B. Poudel, T. J. Cummins, A. Rudra, J. A. Covel, J. Am. Chem. Soc. 2011, 133, 744–747. DOI: 10.1021/ja110198y; b) S. Manaviazar, K. J. Hale, Angew. Chem. 2011, 123, 8948–8951. DOI: 10.1002/ange.201101562; Angew. Chem. Int. Ed. 2011, 50, 8786–8789. DOI: 10.1002/anie.201101562
104) P. A. Wender, A. J. Schrier, J. Am. Chem. Soc. 2011, 133, 9228–9231. DOI: 10.1021/ja203034k
105) S. Han, M. Movassaghi, J. Am. Chem. Soc. 2011, 133, 10768–10771. DOI: 10.1021/ja204597k
106) C.-J. Tan, Y.-T. Di, Y.-H. Wang, Y. Zhang, Y.-K. Si, Q. Zhang, S. Gao, X.-J. Hu, X. Fang, S.-F. Li, X.-J. Hao, Org. Lett. 2010, 12, 2370–2373. DOI: 10.1021/ol100715x

Medicinal Chemistry

107) K. X. Chen, F. G. Njoroge, Prog. Med. Chem. 2010, 49, 1–36. DOI: 10.1016/S0079-6468(10)49001-3
108) L. S. Smith, M. Nelson, S. Naik, J. Woten, Ann. Pharmacother. 2011, 45, 639–648. DOI: 10.1345/aph.1P430
109) P. C. Wong, D. J. P. Pinto, D. Zhang, J. Thrombosis Thrombolysis 2011, 31, 478–492. DOI: 10.1007/s11239-011-0551-3
110) I. Sanz, U. Yasothan, P. Kirkpatrick, Nat. Rev. Drug Discov. 2011, 10, 335–336. DOI: 10.1038/nrd3436
111) Anonymous, Med. Lett. Drugs Therap. 2011, 53, 51–52. Link

Solid Phase Synthesis

112) B. Vankova, V. Krchnak, M. Soural, J. Hlavac, ACS Comb. Sci. 2011, 13, 496–500. DOI: 10.1021/co200075r
113) A. A. Poeylaut-Palena, S. A. Testero, E. G. Mata, Chem. Commun. 2011, 47, 1565–1567. DOI: 10.1039/c0cc04115g
114) M. Döbele, M. S. Wiehn, S. Bräse, Angew. Chem. 2011, 123, 11737–11739. DOI: 10.1002/ange.201105446; Angew. Chem. Int. Ed. 2011, 50, 11533–11535. DOI: 10.1002/anie.201105446
115) S. Vanderheiden, B. Bulat, T. Zevaco, N. Jung, S. Bräse, Chem. Commun. 2011, 47, 9063–9065. DOI: 10.1039/c1cc12950c
116) G. Moura-Letts, C. M. DiBlasi, R. A. Bauer, D. S. Tan, Proc. Natl. Acad. Sci. USA. 2011, 108, 6745–6750. DOI: 10.1073/pnas.1015268108
117) D. C. Kapeller, S. Bräse, ACS Comb. Sci. 2011, 13, 554–561. DOI: 10.1021/co200107s
118) F. Thielbeer, D. Donaldson, M. Bradley, Bioconjugate Chem. 2011, 22, 144–150. DOI: 10.1021/bc1005015
119) L. M. Sanchez, M. E. Curtis, B. E. Bracamonte, K. L. Kurita, G. Navarro, O. D. Sparkman, R. G. Linington, Org. Lett. 2011, 13, 3770–3773. DOI: 10.1021/ol201404v
120) P. R. Kumaresan, Y. Wang, M. Saunders, Y. Maeda, R. Liu, X. Wang, K. S. Lam, ACS Comb. Sci. 2011, 13, 259–264. DOI: 10.1021/co100069t
121) L. J. Martin, A. L. Marzinzik, S. V. Ley, I. R. Baxendale, Org. Lett. 2011, 13, 320–323. DOI: 10.1021/ol1027927

Peptides

122) Y. H. Seo, K. S. Carroll, Angew. Chem. 2011, 123, 1378–1381. DOI: 10.1002/ange.201007175; Angew. Chem. Int. Ed. 2011, 50, 1342–1345. DOI: 10.1002/anie.201007175
123) S. Stoller, G. Sicoli, T. Y. Baranova, M. Bennati, U. Diederichsen, Angew. Chem. 2011, 123, 9917–9920. DOI: 10.1002/ange.201103315; Angew. Chem. Int. Ed. 2011, 50, 9743–9746. DOI: 10.1002/anie.201103315
124) M. Roice, I. Johannsen, M. Meldal, QSAR Comb. Sci. 2004, 23, 662–673. DOI: 10.1002/qsar.200420021
125) L. Zhang, X. Chen, P. Xue, H. H. Sun, I. D. Williams, K. B. Sharpless, V. V. Fokin, G. Jia, J. Am. Chem. Soc. 2005, 127, 15998–15999. DOI: 10.1021/ja054114s
126) M. Empting, O. Avrutina, R. Meusinger, S. Fabritz, M. Reinwarth, M. Biesalski, S. Voigt, G. Buntkowsky, H. Kolmar, Angew. Chem. 2011, 123, 5313–5317. DOI: 10.1002/ange.201008142; Angew. Chem. Int. Ed. 2011, 50, 5207–5211. DOI: 10.1002/anie.201008142


Enzyme Mechanisms and Models, New Proteins and their Functions

127) G. Srinivasan, C. M. James, J. A. Krzycki, Science 2002, 296, 1459–1462. DOI: 10.1126/science.1069588
128) B. Hao, W. Gong, T. K. Ferguson, C. M. James, J. A. Krzycki, M. K. Chan, Science 2002, 296, 1462–1466. DOI: 10.1126/science.1069556
129) M. A. Gaston, L. Zhang, K. B. Green-Church, J. A. Krzycki, Nature 2011, 471, 647–650. DOI: 10.1038/nature09918
130) S. E. Cellitti, W. Ou, H.-P. Chiu, J. Grünewald, D. H. Jones, X. Hao, Q. Fan, L. L. Quinn, K. Ng, A. T. Anfora, S. A. Lesley, T. Uno, A. Brock, B. H. Geierstanger, Nat. Chem. Biol. 2011, 7, 528–530. DOI: 10.1038/nchembio.586
131) F. Quitterer, A. List, W. Eisenreich, A. Bacher, M. Groll, Angew. Chem. 2011, 124, 1367–1370. DOI: 10.1002/ange.201106765; Angew. Chem. Int. Ed. 2012, 51, 1339–1342. DOI: 10.1002/anie.201106765

Carbohydrates

132) www.rsc.org/chemcomm/glycochemistry
133) Y.-H. Tsai, S. Götze, N. Azzouz, H. S. Hahm, P. H. Seeberger, D. Varon Silva, Angew. Chem. 2011, 123, 10136–10139. DOI: 10.1002/ange.201103483Angew. Chem. Int. Ed. 2011, 50, 9961–9964. DOI: 10.1002/anie.201103483
134) P. Cmoch, Z. Pakulski, Tetrahedron: Asymmetry 2008, 19, 1494–1503. DOI: 10.1016/j.tetasy.2008.05.032
135) a) A. Mallagaray, A. Canales, G. Domínguez, J. Jiménez-Barbero, J. Pérez-Castells, Chem. Commun. 2011, 47, 7179–7181. DOI: 10.1039/c1cc11860a; b) S. Yamamoto, T. Yamaguchi, M. Erdélyi, C. Griesinger, K. Kato, Chem. Eur. J. 2011, 17, 9280–9282. DOI: 10.1002/chem.201100856

Oligosaccharides

136) a) H. Ochiai, W. Huang, L.-X. Wang, J. Am. Chem. Soc. 2008, 130, 13790–13803. DOI: 10.1021/ja805044x; b) M. N. Amin, W. Huang, R. M. Mizanur, L.-X. Wan, J. Am. Chem. Soc. 2011, 133, 14404–14417. DOI: 10.1021/ja204831z
137) Y. Xu, S. Masuko, M. Takieddin, H. Xu, R. Liu, J. Jing, S. A. Mousa, R. J. Lindhardt, J. Liu, Science 2011, 334, 498–501. DOI: 10.1126/science.1207478
138) S. J. Hasty, M. A. Kleine, A. V. Demchenko, Angew. Chem. 2011, 123, 4283–4287. DOI: 10.1002/ange.201007212; Angew. Chem. Int. Ed. 2011, 50, 4197–4201. DOI: 10.1002/anie.201007212

Oligonucleotides

139) A. H. El-Sagheer, T. Brown, Proc. Natl. Acad. Sci. USA 2010, 107, 15329–15334. DOI: 10.1073/pnas.1006447107
140) V. Hong, A. K. Udit, R. A. Evans, M. G. Finn, ChemBioChem 2008, 9, 1481–1486. DOI: 10.1002/cbic.200700768
141) E. Paredes, S. R. Das, ChemBioChem 2011, 12, 125–131. DOI: 10.1002/cbic.201000466
142) E. Paredes, M. Evans, S. R. Das, Methods 2011, 54, 251–259. DOI: 10.1016/j.ymeth.2011.02.008
143) Y. Motorin, J. Burhenne, R. Teimer, K. Koynov, S. Willnow, E. Weinhold, M. Helm, Nucleic Acids Res. 2011, 39, 1943–1952. DOI: 10.1093/nar/gkq825
144) S. Kellner, S. Seidu-Larry, J. Burhenne, Y. Motorin, M. Helm, Nucleic Acids Res. 2011, 39, 7348–7360. DOI: 10.1093/nar/gkr449


Enzymes in Synthesis

145) X. Garrabou, J. Joglar, T. Parella, R. Crehuet, J. Bujons, P. Clapés, Adv. Synth. Catal. 2011, 353, 89–99. DOI: 10.1002/adsc.201000719
146) M. Gutierrez, T. Parella, J. Joglar, J. Bujons, P. Clapés, Chem. Commun. 2011, 47, 5762–5764. DOI: 10.1039/c1cc11069a
147) M. Rale, S. Schneider, G. A. Sprenger, A. K. Samland, W.-D. Fessner, Chem. Eur. J. 2011, 17, 2623–2632. DOI: 10.1002/chem.201002942
148) R. B. Hamed, J. R. Gomez-Castellanos, A. Thalhammer, D. Harding, C. Ducho, T. D. W. Claridge, C. J. Schofield, Nat. Chem. 2011, 3, 365–371. DOI: 10.1038/nchem.1011
149) J. H. Schrittwieser, V. Resch, J. H. Sattler, W.-D. Lienhart, K. Durchschein, A. Winkler, K. Gruber, P. Macheroux, W. Kroutil, Angew. Chem. 2011, 123, 1100–1103. DOI: 10.1002/ange.201006268; Angew. Chem. Int. Ed. 2011, 50, 1068–1071. DOI: 10.1002/anie.201006268
150) Y. Hu, C. C. Lee, M. W. Ribbe, Science 2011, 333, 753–755. DOI: 10.1126/science.1206883


Agrochemistry

151) C. Bass, A. M. Puinean, M. Andrews, P. Cutler, M. Daniels, J. Elias, V. Paul, A. J. Crossthwaite, I. Denholm, L. M. Field, S. P. Foster, R. Lind, M. S. Williamson, R. Slater, BMC Neuroscience 2011, 12, 51. DOI: 10.1186/1471-2202-12-51
152) AGROW 2011, 618, 26. Link (pdf)
153) Sumitomo Chemical Company, Limited; Annual Report 2011, page 7.
154) H. Ikeda, S. Yamato, Y. Kajiwara, T. Nishiyama, T. Tabuchi, Y. Tanaka, Weed Biology and Management 2011, 11, 167–174. DOI: 10.1111/j.1445-6664.2011.00417.x
155) AGROW 2011, 619, 5. Link (pdf)
156) AGROW 2011, 611, 8. Link (pdf)
157) T. Yoshimura, Takumi, M. Nakatani, S. Asakura, R. Hanai, M. Hiraoka, S. Kuwahara, J. Pestic. Sci. 2011, 36, 212–220. DOI: 10.1584/jpestics.G10-87
158) Q. Wu, Y. Xue, Y. Su, Shijie Nongyao 2011, 33, 22–24.
159) Sandra E. Peterson, Bayer Annual Press Conference 2011, presentation pages 9, 15.
160) www.docin.com/p-210186890.html
161) Y. Tanetani, T. Fujioka, J. Horita, K. Kaku, T. Shimizu, J. Pestic. Sci. 2011, 36, 357–362. DOI: 10.1584/jpestics.G10-97
162) a) K. Matoba, H. Kawai, T. Furukawa, A. Kusuda, E. Tokunaga, S. Nakamura, M. Shiro, N. Shibata, Angew. Chem. 2010, 122, 5898–5902. DOI: 10.1002/ange.201002065 ; Angew. Chem. Int. Ed. 2010, 49, 5762–5766. DOI: 10.1002/anie.201002065; b) H. Kawai, K. Tachi, E. Tokunaga, M. Shiro, N. Shibata, Angew. Chem. 2011, 123, 7949–7952. DOI: 10.1002/ange.201102442; Angew. Chem. Int. Ed. 2011, 50, 7803–7806. DOI: 10.1002/anie.201102442
163) AGROW 2011, 621, 29. Link (pdf)
164) http://ir4.rutgers.edu/FoodUse/FUWorkshop/2011FUWPresentations/2011FUWBayer%20BYI-02960.pdf
165) N. Minowa, K. Imamura, S. Shibahara, Biosci. Biotech. Biochem. 1997, 61, 1213–1215. DOI: 10.1271/bbb.61.1213
166) H. Walter, C. Corsi, M. Oostendorp, G. Scalliet, R. Zeun, The 242nd ACS meeting, Denver, August 28–September 1, 2011; AGROW 2011, 616, 25. Link
167) J. Dietz, T. Grote, S. Strathmann, The 242nd ACS meeting, Denver, August 28–September 1, 2011; AGROW 2011, 627, 25. Link
168) AGROW 2011, 622, 28. Link


NMR Spectroscopy

169) M. Braun, M., S. J. Glaser, J. Magn. Reson. 2010, 207, 114–123. DOI: 10.1016/j.jmr.2010.08.013
170) P. Hubler, J. Bargon, S. J. Glaser, J. Chem. Phys. 2000, 113, 2056–2059. DOI: 10.1063/1.482015
171) M. Carravetta, O. G. Johannessen, M. H. Levitt, Phys. Rev. Lett. 2004, 92, 153003. DOI: 10.1103/PhysRevLett.92.153003
172) A. Bornet, S. Jannin, J. A. Konter, P. Hautle, B. van den Brandt, G. Bodenhausen, J. Am. Chem. Soc. 2011, 133, 15644–15649. DOI: 10.1021/ja2052792
173) G. Kummerlöwe, B. Crone, M. Kretschmer, S. F. Kirsch, B. Luy, Angew. Chem. 2011, 123, 2693–2696. DOI: 10.1002/ange.201007305; Angew. Chem. Int. Ed. 2011, 50, 2643–2645. DOI: 10.1002/anie.201007305
174) F. Hallwass, M. Schmidt, H. Sun, A. Mazur, G. Kummerlöwe, B. Luy, A. Navarro-Vázquez, C. Griesinger, U. M. Reinscheid, Angew. Chem. 2011, 123, 9659–9662. DOI. 10.1002/ange.201101784; Angew. Chem. Int. Ed. 2011, 50, 9487–9490. DOI: 10.1002/anie.201101784
175) S. Venkataramani, U. Jana, M. Dommaschk, F. D. Sönnichsen, F. Tuczek, R. Herges, Science 2011, 331, 445–448. DOI: 10.1126/science.1201180

Leave a Reply

Kindly review our community guidelines before leaving a comment.

Your email address will not be published. Required fields are marked *